

Journal of Nuclear Materials 279 (2000) 356-359

www.elsevier.nl/locate/jnucmat

Letter to the Editors

Densification behavior of U₃O₈ powder compacts by dilatometry

Kun Woo Song *, Keon Sik Kim, Youn Ho Jung

Advanced LWR Fuel Development, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Taejon 305-600, South Korea

Received 4 November 1999; accepted 2 February 2000

Abstract

The densification behavior of U_3O_8 powder compacts has been investigated in a reducing atmosphere by dilatometry. The U_3O_8 compact shrank due to the reduction of U_3O_8 to UO_2 and then densified above 1200°C. The U_3O_8 compact containing simulated fission products densified more than the U_3O_8 compact. The addition of Nb_2O_5 enhanced significantly the densification rates of both compacts over the temperature range between 1200°C and 1600°C. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Uranium dioxide (UO_2) fuel pellets have been widely used as a nuclear fuel. While UO_2 pellets are irradiated in a nuclear reactor, fissile materials are depleted and simultaneously fission products are produced. Spent fuel pellets, which have been irradiated to the design burnup, still include fissile materials that are worthwhile to be recycled. Thus, researches have been undertaken to fabricate new fuel pellets using spent fuel pellets.

According to the literature [1,2], irradiated UO₂ fuel pellets can be processed using a dry method to fabricate UO₂-based fuel pellets for reuse in a light water reactor. This cycle, the so-called AIROX cycle, includes the processes of producing U_3O_8 -based powder by the oxidation of spent UO₂ fuel pellets and of producing sinterable UO₂-based powder from the U₃O₈-based powder. The terms 'UO₂-based' and 'U₃O₈-based' represent 'UO₂ containing fission products' and 'U₃O₈ containing fission products', respectively. Recently, the so-called DUPIC cycle [3] has been investigated for the purpose of processing irradiated UO₂ pellets and refabricating UO₂-based fuel pellets for reuse in a CAN-DU reactor.

It has been known [1,2] that the U_3O_8 -based powder has to be further treated (oxidized and reduced) several times to have a suitable sinterability since it is not capable of making a pellet with a proper density. Process control associated with such powder treatments is difficult and time-consuming, for they have to be conducted remotely in a shielded cell. Therefore, it is necessary to refabricate fuel pellets using the U_3O_8 -based powder without powder treatments.

The authors recently found that the powder mixture consisting of UO_2 and U_3O_8 powders, which had intrinsically a very low sinterability, could be sintered up to a high density by adding Nb₂O₅ or TiO₂ as a sintering additive [4,5]. The U_3O_8 -based powder is supposed to be similar in physical properties to the U_3O_8 powder, so it is expected that such sintering additives could enhance densification in sintering the U_3O_8 -based powder.

The purpose of this work is to study the densification behavior of U_3O_8 and U_3O_8 -based powder compacts. The simulated UO_2 pellet, which can replicate a spent UO_2 fuel pellet, is made and then processed to make a U_3O_8 -based compact. In addition, the effect of Nb_2O_5 addition on the densification behavior is investigated.

2. Experimental

 UO_2 pellets, which had a density of 95.5% the theoretical density of UO_2 (10.96 g/cm³) and a grain diameter

0022-3115/00/\$ - see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: S 0 0 2 2 - 3 1 1 5 (0 0) 0 0 0 2 5 - 8

^{*}Corresponding author. Tel.: +82-42 868 2579; fax: +82-42 868 2403.

E-mail address: kwsong@kaeri.re.kr (K.W. Song).

of 7 μ m, were oxidized at 400°C for 3 h in flowing air. During the oxidation a UO₂ pellet was spontaneously pulverized to U₃O₈ powder by the stress generated. The average particle size of U₃O₈ powder measured by a laser scattering method was 8 μ m and the BET surface area of the powder was 0.5 m²/g.

A special UO₂ fuel pellet was prepared to simulate a UO₂ pellet irradiated to 35000 MWD/MTU in a light water reactor. The composition of an irradiated UO₂ pellet was calculated with the ORIGEN computer code [6] and of all the elements included in the irradiated UO₂ fuel pellet, 12 major chemical elements were selected. The powder mixture whose composition is shown in Table 1 was prepared using UO₂ powder and 12 non-radioactive chemical species. The powder mixture was ball-milled and granulated. Granules were pressed into compacts and sintered at 1650°C under H₂ gas to produce a simulated UO₂ fuel pellet. The simulated UO₂ fuel pellet had a density of about 96% the theoretical density, which was assumed to be 10.73 g/cm³, and it had a grain diameter of about 6 μ m.

It is expected that the composition of a simulated UO_2 pellet was slightly different from the powder composition in Table 1, since some changes occurred during sintering. BaCO₃ decomposed into BaO and CO₂ and the oxides in Table 1 were dissolved in UO₂ or formed precipitates, with some oxides such as CeO₂ and MoO₃ reduced.

Simulated UO₂ fuel pellets were oxidized at 450°C for 3 h in flowing air to produce U_3O_8 -based powder, which was similar to the U_3O_8 powder in size and surface area. Nb₂O₅ was added in a quantity of 0.3 wt% to each of the U_3O_8 and U_3O_8 -based powders. Four kinds of powders (U_3O_8 powders with and without Nb₂O₅) were pressed under 300 MPa into compacts. After a compact was set in a push rod type dilatometer, it was heated to 1650°C with 5°C/min under H₂ gas containing 1% H₂O by volume and then held for 4 h. The shrinkage of a

Table 1 Powder composition for the preparation of a simulated UO_2 pellet

F	
Elements	Percentage by weight
SrO	9.147×10^{-2}
Y_2O_3	5.488×10^{-2}
ZrO_2	4.487×10^{-1}
MoO ₃	4.737×10^{-1}
RuO ₂	3.678×10^{-1}
Rh_2O_3	4.814×10^{-2}
PdO	1.464×10^{-1}
TeO_2	5.585×10^{-2}
BaCO ₃	2.552×10^{-1}
La_2O_3	1.926×10^{-1}
CeO_2	9.186×10^{-1}
Nd_2O_3	6.605×10^{-1}
UO ₂	96.286

compact was measured in an axial direction with a linear variable differential transformer (LVDT) transducer.

3. Results and discussion

Fig. 1 shows the variations of length change ($\Delta L/L_0$) with temperature and holding time for the various compacts. The U₃O₈ compact undergoes a gradual expansion up to 500°C and a drastic shrinkage of about 8% between 500°C and 600°C. Le Page and Fane [7] found that the U₃O₈ phase was reduced to the UO₂ phase at temperatures of 500–600°C in hydrogen for less than 1 h. During the reduction the volume of U₃O₈ particle decreases theoretically by 23.6%, which is equivalent to about 7.9% in length, since the theoretical density increases from 8.37 to 10.96 g/cm³. The drastic shrinkage of about 8% implies that the U₃O₈ compact shrinks during reduction nearly as a body of full U₃O₈.

The volume of U_3O_8 compact, however, is actually composed of both U_3O_8 particles and porosity and the U_3O_8 compact has a density of 5.59 g/cm³ (66.8% in a fractional density). If only the volume of U_3O_8 particles shrinks due to the reduction, the compact can decrease only by 15.8% in volume, i.e., 5.3% in length. The drastic shrinkage is larger than 5.3%, so it can be deduced that the shrinkage of U_3O_8 compact includes not only the shrinkage of U_3O_8 particles but also the shrinkage of porosity. It is estimated that the porosity volume of U_3O_8 compact shrinks by the nearly same ratio as the volume of U_3O_8 compact remains almost unchanged during the reduction of U_3O_8 to UO_2 , in spite of the drastic shrinkage.

Fig. 1. Variations of shrinkage with temperature and holding time for U_3O_8 and U_3O_8 -based compacts.

After the drastic shrinkage the compact appears not to shrink until about 1200°C and then it shrinks gradually to a final shrinkage of 11%. This final shrinkage originates from uranium reduction and densification and it is expected that only about 5% shrinkage of the 11% shrinkage is due to the densification of U_3O_8 compact.

The U₃O₈-based compact undergoes a gradual shrinkage over the temperature range 200-1200°C, and the related shrinkage is about 3%, which is much smaller than that of the U_3O_8 compact. This suggests that the shrinkage of U₃O₈-based compact does not include all the shrinkage of individual U_3O_8 -based particles during reduction. Consequently, a considerable portion of the shrinkage of individual U₃O₈-based particles forms new porosity in a compact. It is supposed that the fractional density of U₃O₈-based compact decreases much due to the reduction, different from that of U_3O_8 compact. The U₃O₈-based compact begins to shrink at 1200°C and the final shrinkage of U₃O₈-based compact is about 13%. From the viewpoint of densification, it can be inferred that the U₃O₈-based compact undergoes some de-densification (decrease in compact density) below about 1200°C and densifies by about 10% shrinkage above 1200°C.

It can be readily seen that the addition of 0.3 wt% Nb₂O₅ has a very small effect on the shrinkage behavior of compacts below 1200°C but appears to enhance significantly the shrinkage above 1200°C. The U₃O₈ and U₃O₈-based compacts get the extra final shrinkage of about 5% and 6%, respectively, by adding 0.3 wt% Nb₂O₅. In other words, those compacts can be densified more effectively by the addition of 0.3 wt% Nb₂O₅.

Fig. 2 shows the variations of shrinkage rate $(\Delta L/L_0/min)$ with temperature and holding time for the various

compacts. It can be noticed that the shrinkage rates start to increase at about 1200°C for all the compacts. The shrinkage rate above 1200°C is supposed to be equivalent to the densification rate. As the temperature increases, the U_3O_8 -based compact densifies with a higher rate than the U_3O_8 compact. The densification rate of U_3O_8 -based compact has a remarkable maximum around 1550°C. It can be seen from Fig. 2 that the addition of Nb₂O₅ enhances significantly the densification rates of U_3O_8 and U_3O_8 -based compacts in the temperature range 1200–1600°C, suggesting that the added Nb₂O₅ acts as a densification promoter in that temperature range.

The oxygen potentials (RT ln $p(O_2)$) of niobium oxide and sintering gas were calculated using the HSC computer code [8] and the results are plotted in Fig. 3. A stable niobium oxide is dependent on temperature under hydrogen gas with 1% moisture; Nb₂O₅ below 820°C and NbO₂ between 820°C and 1650°C. Considering that the addition of Nb₂O₅ enhances significantly a densification rate in the temperature range 1200–1600°C, it is reasonable to suppose that NbO₂, a reduced product of Nb₂O₅, plays a dominant role in enhancing densification.

While the U_3O_8 compact with Nb₂O₅ is heated under the sintering gas, it is converted to a UO₂ compact with NbO₂ before the start of densification. If the Nb⁴⁺ ion enters interstitial site in the UO₂ structure during sintering, new uranium vacancies could be formed to maintain charge neutrality [4,9]. An increase in the concentration of uranium vacancy can enhance uranium diffusion, so it is expected that the densification of the UO₂ compact with NbO₂ progressed more rapidly.

As shown in Figs. 1 and 2, the U_3O_8 -based compact exhibits a larger final densification and a higher densi-

Fig. 2. Variations of shrinkage rate with temperature and holding time for U_3O_8 and U_3O_8 -based compacts.

Fig. 3. Oxygen potentials of various oxides and sintering gas as a function of temperature. (1) $2NbO + O_2(g) = 2NbO_2$; (2) $4NbO_2 + O_2(g) = 2Nb_2O_5$; (3) $2Ce_2O_3 + O_2(g) = 4CeO_2(g)$; (4) $Mo + O_2(g) = MoO_2$.

fication rate than the U_3O_8 compact. This suggests that the addition of simulated fission products enhances the densification of U₃O₈ compact. Kleykamp [10] has reported that the fission products of irradiated fuel pellet are present in the form of dissolved oxides, metallic precipitates or oxide precipitates. It can be assumed that the chemical states of the simulated fission products are similar to those of real fission products. Of the simulated fission products in Table 1, MoO₃ and CeO₂ are present in considerable quantities and their chemical states are sensitively dependent on the oxygen potential, so their possible effects are primarily discussed. The Mo/MoO₂ and Ce₂O₃/CeO₂ equilibrium lines shown in Fig. 3 indicate that metallic Mo is stable in the whole temperature range and Ce₂O₃ is stable above about 900°C. The metallic Mo precipitate is likely to have an insignificant effect on the densification, but the dissolved Ce_2O_3 can change defect concentration in the UO₂ structure so that it could have some effect on the densification. It is supposed, however, that more experimental results are needed to discuss further the mechanisms by which the simulated fission products enhance densification.

While the U_3O_8 -based compact with Nb₂O₅ is heated in the sintering gas, it is converted to a UO₂-based compact with NbO₂. During sintering the densification of this compact could be enhanced mainly by the same role of Nb⁴⁺ ion as the densification of the UO₂ compact with NbO₂ could be enhanced by. In addition, the simulated fission products might play some roles in the densification. It can be noticed from Fig. 1 that the U₃O₈-based and U₃O₈ compacts both gain a similar amount of additional densification by the addition of niobium oxide. This suggests that niobium oxide acts as a densification promoter even in the presence of the simulated fission products. Consequently, it would be reasonable to suppose that the simulated fission products do not obstruct the entrance of Nb⁴⁺ ion into the UO_2 structure.

4. Conclusions

As the compact of U_3O_8 powder is sintered in hydrogen, it drastically shrinks by 8% in length due to the reduction of U₃O₈ to UO₂ between 500°C and 600°C and then does not shrink further until 1200°C. The compact of U₃O₈-based powder shrinks gradually by about 3% over the temperature range between 200°C and 1200°C. It was estimated that the fractional density of U_3O_8 compact remained almost constant but that of U₃O₈-based compact decreased during the reduction. The U_3O_8 and U_3O_8 -based compacts begin to densify at 1200°C and then the U₃O₈-based compact densifies with a higher rate than the U_3O_8 compact. Thus, the U_3O_8 based compact shows a greater final densification. The addition of Nb₂O₅ substantially enhances the densification rates of U₃O₈ and U₃O₈-based compacts over the temperature range between 1200°C and 1600°C and thus the compacts can densify by an additional 5-6% in length.

Acknowledgements

This work has been carried out under the Nuclear R&D Program supported by the Ministry of Science and Technology.

References

- [1] S. Strausberg, NAA-SR-7138, 1962.
- [2] J. Guon, J.E. Bodine, R.J. Sullivan, NAA-SR-8213, 1964.
- [3] J.S. Lee, H.S. Park, R.D. Gadsby, J. Sullivan, Burn spent PWR fuel again in CANDU reactors by DUPIC, in: International Conference on Evaluation of Emerging Nuclear Fuel Cycle Systems, Versailles, France, September 1995, p. 355.
- [4] K.W. Song, K.S. Kim, K.W. Kang, Y.H. Jung, J. Nucl. Mater. 207 (2000) 123.
- [5] K.W. Song, K.S. Kim, K.W. Kang, Y.M. Kim, J. Korean, Nucl. Soc. 31 (1999) 455.
- [6] M.J. Bell, ORIGEN-2 Code, ORNL-TM-4397, 1973.
- [7] A.H. Le Page, A.G. Fane, J. Inorg. Nucl. Chem. 36 (1974) 87.
- [8] HSC Chemistry for Windows, Outokump research, 1994.
- [9] K.W. Song, K.S. Kim, K.W. Kang, Y.H. Jung, J. Korean, Nucl. Soc. 31 (1999) 335.
- [10] H. Kleykamp, J. Nucl. Mater. 131 (1985) 221.